Plongeur

A topological data analysis library.

Core algorithm written in Scala, using Apache Spark.

Executed in a Jupyter notebook, using the Apache Toree kernel and declarative widgets.

Graphs rendered with Sigma/Linkurious, wrapped in a Polymer component.

Reactive machinery powered by Rx RxScala.

Notebook focus

Cleaning up Rx subscriptions on re-evaluation of cells. This is too brittle for my taste.

Maven dependencies


In [1]:
%AddDeps org.apache.spark spark-mllib_2.10 1.6.2
%AddDeps org.scalanlp breeze-natives_2.10 0.12
%AddDeps com.github.haifengl smile-core 1.1.0 --transitive
%AddDeps io.reactivex rxscala_2.10 0.26.1 --transitive
%AddDeps com.softwaremill.quicklens quicklens_2.10 1.4.4
%AddDeps com.chuusai shapeless_2.10 2.3.0 --repository https://oss.sonatype.org/content/repositories/releases/
%AddDeps org.tmoerman plongeur-spark_2.10 0.3.15 --repository file:/Users/tmo/.m2/repository


Marking org.apache.spark:spark-mllib_2.10:1.6.2 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/org/apache/spark/spark-mllib_2.10/1.6.2/spark-mllib_2.10-1.6.2.jar
Marking org.scalanlp:breeze-natives_2.10:0.12 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/org/scalanlp/breeze-natives_2.10/0.12/breeze-natives_2.10-0.12.jar
Marking com.github.haifengl:smile-core:1.1.0 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/com/github/haifengl/smile-data/1.1.0/smile-data-1.1.0.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/com/github/haifengl/smile-graph/1.1.0/smile-graph-1.1.0.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/com/github/haifengl/smile-core/1.1.0/smile-core-1.1.0.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/com/github/haifengl/smile-math/1.1.0/smile-math-1.1.0.jar
Marking io.reactivex:rxscala_2.10:0.26.1 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/io/reactivex/rxscala_2.10/0.26.1/rxscala_2.10-0.26.1.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/io/reactivex/rxjava/1.1.1/rxjava-1.1.1.jar
Marking com.softwaremill.quicklens:quicklens_2.10:1.4.4 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/repo1.maven.org/maven2/com/softwaremill/quicklens/quicklens_2.10/1.4.4/quicklens_2.10-1.4.4.jar
Marking com.chuusai:shapeless_2.10:2.3.0 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> https://oss.sonatype.org/content/repositories/releases/
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/https/oss.sonatype.org/content/repositories/releases/com/chuusai/shapeless_2.10/2.3.0/shapeless_2.10-2.3.0.jar
Marking org.tmoerman:plongeur-spark_2.10:0.3.15 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps2032469255766433832/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /Users/tmo/.m2/repository/org/tmoerman/plongeur-spark_2.10/0.3.15/plongeur-spark_2.10-0.3.15.jar

In [2]:
%addjar http://localhost:8888/nbextensions/declarativewidgets/declarativewidgets.jar


Starting download from http://localhost:8888/nbextensions/declarativewidgets/declarativewidgets.jar
Finished download of declarativewidgets.jar

Import classes


In [3]:
import rx.lang.scala.{Observer, Subscription, Observable}
import rx.lang.scala.subjects.PublishSubject
import rx.lang.scala.subjects._

import shapeless.HNil

import org.tmoerman.plongeur.tda._
import org.tmoerman.plongeur.tda.Model._
import org.tmoerman.plongeur.tda.cluster.Clustering._
import org.tmoerman.plongeur.tda.cluster.Scale._

import declarativewidgets._
initWidgets

import declarativewidgets.WidgetChannels.channel



In [4]:
import java.util.concurrent.atomic.AtomicReference

case class SubRef(val ref: AtomicReference[Option[Subscription]] = new AtomicReference[Option[Subscription]](None)) extends Serializable {

    def update(sub: Subscription): Unit = ref.getAndSet(Option(sub)).foreach(old => old.unsubscribe())

    def reset(): Unit = update(null)

}

Import polymer elements

These cells triggers Bower installations of the specified web components.

If it doesn't work, check whether Bower has sufficient permissions to install in the jupyter /nbextensions folder.


In [5]:
%%html
<link rel='import' href='urth_components/paper-slider/paper-slider.html' 
        is='urth-core-import' package='PolymerElements/paper-slider'>
<link rel='import' href='urth_components/paper-button/paper-button.html' 
        is='urth-core-import' package='PolymerElements/paper-button'>
<link rel='import' href='urth_components/plongeur-graph/plongeur-graph.html' 
        is='urth-core-import' package='tmoerman/plongeur-graph'>
<link rel='import' href='urth_components/urth-viz-scatter/urth-viz-scatter.html' is='urth-core-import'>


Out[5]:

Reactive TDA Machine

Keep references to Rx subscriptions apart.


In [6]:
val in$_subRef = SubRef()

Instantiate a PublishSubject. This stream of TDAParams instances represents the input of a TDAMachine. The PublishSubject listens to changes and sets these to the channel "ch_TDA_1" under the "params" key.

TODO: unsubscribe previous on re-evaluation


In [7]:
val in$ = PublishSubject[TDAParams]

in$_subRef.update(in$.subscribe(p => channel("ch_TDA_1").set("params", p.toString)))

Create an initial TDAParams instance. In the same cell, we submit the instance to the PublishSubject.


In [8]:
val tdaParams =
      TDAParams(
        lens = TDALens(
          Filter("PCA" :: 0 :: HNil, 20, 0.6)),
        clusteringParams = ClusteringParams(),
        scaleSelection = histogram(10))

in$.onNext(tdaParams)

Inititalize rdd

In this example, we are using a synthetic torus-shaped 2D data set.


In [9]:
import org.apache.spark.rdd.RDD
import org.apache.commons.lang.StringUtils.trim
import org.apache.spark.mllib.linalg.Vectors.dense

def readData(file: String) = 
    sc.
        textFile(file).
        map(_.split(",").map(trim)).
        zipWithIndex.
        map{ case (Array(x, y, z), idx) => dp(idx, dense(x.toDouble, y.toDouble, z.toDouble))}

In [10]:
val data_path = "/Users/tmo/Work/batiskav/projects/plongeur/scala/plongeur-spark/src/test/resources/data/"

val horse = data_path + "horse.csv"

val rdd = readData(horse).cache

val ctx = TDAContext(sc, rdd)

Turn a TDAResult into a data structure.


In [11]:
val r = scala.util.Random

def format(result: TDAResult) = Map(
    "nodes" -> result.clusters.map(c =>
      Map(
        "id"     -> c.id.toString,
        "label"  -> c.id.toString,
        "size"   -> c.dataPoints.size,
        "x"      -> r.nextInt(100),
        "y"      -> r.nextInt(100))),
    "edges" -> result.edges.map(e => {
      val (from, to) = e.toArray match {case Array(f, t) => (f, t)}

      Map(
        "id"     -> s"$from--$to",
        "source" -> from.toString,
        "target" -> to.toString)}))

Run the machine, obtaining an Observable of TDAResult instances


In [12]:
val out$: Observable[(TDAParams, TDAResult)] = TDAMachine.run(ctx, in$)

In [13]:
val out$_subRef = SubRef()

In [14]:
out$_subRef.update(
    out$.subscribe(
        onNext = (t) => t match {case (p, r) => channel("ch_TDA_1").set("result", format(r))},
        onError = (e) => println("Error in TDA machine: ", e)))

Reactive inputs

First, we set up a stream of updates to BASE TDAParams instance.


In [15]:
val pipe$_subRef = SubRef()

val nrBins$ = PublishSubject[Int]

val overlap$ = PublishSubject[Percentage]

In [16]:
channel("ch_TDA_1").watch("nrBins",  (_: Any, v: Int) => nrBins$.onNext(v))
channel("ch_TDA_1").watch("overlap", (_: Any, v: Int) => overlap$.onNext(BigDecimal(v) / 100))

In [23]:
import TDAParams._

val BASE = 
    TDAParams(
        lens = TDALens(          
          Filter("eccentricity" :: "infinity" :: HNil, 15, 0.5)),
        clusteringParams = ClusteringParams(),
        scaleSelection = histogram(50),
        collapseDuplicateClusters = false)

val params$ =
    List(
        nrBins$.map(v => setFilterNrBins(0, v)),
        overlap$.map(v => setFilterOverlap(0, v))).
    reduce(_ merge _).
    scan(BASE)((params, fn) => fn(params))

pipe$_subRef.update(params$.subscribe(in$))

channel("ch_TDA_1").set("nrBins", BASE.lens.filters(0).nrBins)
channel("ch_TDA_1").set("overlap", (BASE.lens.filters(0).overlap * 100).toInt)

We create two slider widgets that provide the inputs for the nrBins$ and overlap$ Observables.


In [24]:
%%html
<template is='urth-core-bind' channel='ch_TDA_1'>  
    <table style="border-style: hidden;">
        <tr style="border-style: hidden;">
            <th style="border-style: hidden;">nr of bins</th>
            <td style="border-style: hidden;">
                <paper-slider min="0" max="100" step="1" value="{{nrBins}}"></paper-slider>
            </td>
            <td style="border-style: hidden;">[[nrBins]]</td>
        </tr>
        <tr style="border-style: hidden;">
            <th style="border-style: hidden;">overlap</th>
            <td style="border-style: hidden;">
                <paper-slider min="0" max="75" step="1" value="{{overlap}}"></paper-slider>
            </td>
            <td style="border-style: hidden;">[[overlap]]%</td>
        </tr>
    </table>        
</template>


Out[24]:

In [19]:
%%html
<template is='urth-core-bind' channel='ch_TDA_1'>    
    <plongeur-graph data="{{result}}"></plongeur-graph>
</template>


Out[19]:

In [20]:
%%html
<template is='urth-core-bind' channel='ch_TDA_1'>  
    <div style='background: #FFB; padding: 10px;'>
        <span style='font-family: "Courier"'>[[params]]</span>
    </div>
</template>


Out[20]:

In [32]:
%%html
<template is='urth-core-bind' channel='data'>    
    <urth-viz-scatter
        datarows='[[raw]]'
        primary='0'
        secondary='1'        
        />
</template>


Out[32]:

In [30]:
val rawData = rdd.
    map(dp => {
        val x = dp.features(2)
        val y = dp.features(1)        
        List(x, y)}).collect.toList

rawData.take(3)


Out[30]:
List(List(-0.379364, 0.59686), List(-0.378438, 0.602476), List(-0.383195, 0.590327))

In [31]:
channel("data").set("raw", rawData)

In [ ]:


In [ ]: